If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+33x+242=0
a = 1; b = 33; c = +242;
Δ = b2-4ac
Δ = 332-4·1·242
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-11}{2*1}=\frac{-44}{2} =-22 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+11}{2*1}=\frac{-22}{2} =-11 $
| -16=4+5v | | x-5=-5/2x+2 | | -2+5y=-32 | | -y/8=-55 | | 17+4.50h=11+5.75h | | 18x+7=15x-8 | | 35=7/8u | | 7n+2n=19 | | 3(3x-4)+2(3x-7)=3(5x-6)-8 | | -2+4x=9=7 | | r3-4=2 | | 3(3w+1)/2=-2 | | 18y-6y=11y+22+y | | 4a−3=9+a | | 2u-9=27 | | 5((2x-8)-2=5(x-3)+3 | | 0.3x-0.5=-0.8 | | 13x+2=7x+18 | | 4(x-2)+x=-58 | | 68=5y+13 | | 5(3+2x)=-5-(5x-80) | | 10r-15=10r-15 | | 68=5y-13 | | 1/2x=250 | | -1/2x+3/4=-2/3(1/2x+6) | | 36=3w+14 | | 5.12(2^x-3)=13.1 | | 2x–1=5x–19 | | 3b-6-4b=-11 | | -½x+¾=-⅔(½x+6) | | 6/s=24/39 | | 6+x=2*x |